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Abstract

The present paper describes an efficient algorithm to integrate the equations of motion implicitly in the frequency
domain. The standard FEM displacement model (Galerkin formulation) is employed to perform space discretization,
and the time-marching process is carried out through an algorithm based on the Green�s function of the mechanical
system in nodal coordinates. In the present formulation, mechanical system Green�s functions are implicitly calculated
in the frequency domain. Once the Green�s functions related matrices are computed, a time integration procedure,
which demands low computational effort when applied to non-linear mechanical systems, becomes available. At the
end of the paper numerical examples are presented in order to illustrate the accuracy of the present approach.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The engineer engaged in dynamic analysis of structures usually employs both time domain and/or trans-
formed domain approaches (Laplace, Fourier, Wavelets, etc.).

Standard frequency-domain approaches based on DFT/FFT algorithms (Bracewell, 1986; Oppenheim
and Schafer, 1989; Proakis and Manolakis, 1996) have proved to be a very powerful tool in the design
of structural systems (Veletsos and Ventura, 1984; Veletsos and Ventura, 1985; Clough and Penzien,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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1993; Newland, 1993; Paz, 1997; Mansur et al., 2004). Numerical approaches for soil–structure interaction
(SSI) modeling have been the subject of intensive research over the last forty years. In a great deal of the
published research work, the soil is modeled by equivalent mass-spring–dashpot systems with frequency
dependent properties; i.e., a frequency-domain strategy is adopted (Liu and Fagel, 1971; Jennings and
Bielak, 1973; Wolf, 1985; Wu and Smith, 1995). Frequency-domain approaches are also most suitable in
many other cases, e.g., (a) when damping properties are frequency dependent, dynamic modeling of struc-
tures being a typical case (Theodorsen and Garrick, 1940; Myklestad, 1952; Bishop, 1955; Newmark, 1957;
Crandall, 1963, 1970, 1991; Makris, 1997; Makris and Zhang, 2000); (b) when the knowledge of the fre-
quency spectrum is necessary (Takewaki and Nakamura, 2000); etc.

In recent years a number of time/frequency-domain strategies (hybrid, implicit, etc.) have been devel-
oped, making it possible to carry out non-linear analyses of mechanical systems having frequency depen-
dent properties (Matthees, 1982; Kawamoto, 1983; Wolf, 1985; Venâncio-Filho and Claret, 1991, 1992;
Aprile et al., 1994; Mansur et al., 2000; Soares Jr. and Mansur, 2003).

Venancio-Filho and Claret (1992) and later on Mansur et al. (2000) presented an Implicit Fourier Trans-
form algorithm (ImFT), where modal coordinates are used to uncouple the equations of motion and the
pseudo-force method is used to deal with non-linear effects and non-proportional damping. Later on Soares
Jr. and Mansur (2003) showed that the first column of the ImFT algorithm matrix corresponding to a par-
ticular mode is the time domain discrete Green�s function of the SDOF equilibrium equation of that mode
computed by applying a discrete inverse Fourier transform algorithm (IFFT) to the corresponding fre-
quency-domain transfer function. Thus it became clear that the ImFT approach is in fact a standard con-
volution procedure (see Mansur, 1983; Dominguez, 1993) being the time domain Green�s function capable
of implicitly account for frequency dependent properties. Soares Jr. and Mansur (2003) presented the
UFTD (unified frequency/time domain) algorithm, which is a modal step-by-step explicit frequency/time
domain procedure that can consider frequency dependent properties; the authors report the UFTD ap-
proach as a stable and efficient explicit step-by-step algorithm.

Nowadays, one can find papers based on the mechanical system Green�s function employing the FEM in
nodal coordinates only in time domain (Fung, 1997; Soares Jr. and Mansur, 2005). The present work re-
ports a unified step-by-step time/frequency-domain algorithm to integrate the FEM (Hughes, 1987; Zie-
nkiewicz and Taylor, 1989; Bathe, 1996) equations of motion in nodal coordinates. The time domain
Green�s function is computed from the corresponding mechanical system frequency-domain transfer func-
tion by a modified DFT procedure. The approach presented here gives accurate and stable results, as illus-
trated by two examples (one linear and one non-linear), presented at the end of the paper.

Moreover, the formulation here reported can also be employed to deal with initial conditions, as an
alternative approach to that previously reported by Mansur et al. (2004). Mansur et al. (2004) presented
a procedure that can consider contributions due to non-null initial conditions when standard DFT/FFT
frequency-domain algorithms are employed. The present paper, on the other hand, presents a step-by-step
hybrid time/frequency-domain procedure. It is also important to observe that, as mentioned above, the
present work differs substantially from that by Soares Jr. and Mansur (2003) as the former paper�s formu-
lation employs nodal coordinates whereas the later employs modal coordinates.
2. Model equations

The finite element method equilibrium equation, which governs the linear response of a dynamic system,
is given by (Hughes, 1987; Zienkiewicz and Taylor, 1989; Clough and Penzien, 1993; Bathe, 1996; Paz,
1997)
M€UðtÞ þ C _UðtÞ þ KUðtÞ ¼ RðtÞ ð1Þ
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where M, C and K are mass, damping and stiffness matrices respectively; R(t) is the nodal equivalent force
vector; U(t), _UðtÞ and €UðtÞ are respectively displacement, velocity and acceleration nodal vectors originated
from the finite element method spatial discretization.

The analytical expressions for the displacement U(t) and the velocity _UðtÞ vectors, which obey Eq. (1),
are given by
UðtÞ ¼ GðtÞCUð0Þ þ _GðtÞMUð0Þ þGðtÞM _Uð0Þ þGðtÞ � RðtÞ
_UðtÞ ¼ �GðtÞKUð0Þ þ _GðtÞM _Uð0Þ þ _GðtÞ � RðtÞ

ð2Þ
where U(0) and _Uð0Þ stand for initial displacement and initial velocity, respectively; G(t) represents the
Green�s function matrix of the model; and the symbol • represents convolution. The j column of G(t),
gj(t), can be obtained through the solution of Eq. (1) for an impulsive load applied at node j, i.e., for a nodal
equivalent force vector given by
RðtÞ ¼ 1jdðt � 0Þ ð3Þ
where d(t � 0) is the Dirac delta function and 1j is a unit base vector, i.e., 1ij = dij, dij being the Kroenecker
delta.

In the present discussion, gj(t) can be computed more conveniently by considering an initial velocity vec-
tor such that the identity impulse = momentum variation is verified, i.e.,
M _gjð0Þ ¼ 1j

Z þ1

�1
dðt � 0Þdt ð4Þ
Thus
_gjð0Þ ¼ M�11j ð5Þ
Therefore
_Gð0Þ ¼ M�1I ¼ M�1 and Gð0Þ ¼ 0 ð6Þ

The method considered here for the numerical solution of Eq. (2) does not use any analytical expression

for the problem Green�s function; rather it employs an implicit frequency-domain procedure to compute
numerically the Green�s function matrix and its time derivative. The convolution integrals indicated in
expression (2) are conveniently approximated as specified in Eq. (8).

Eq. (2) at time Dt reads
UðDtÞ ¼ GðDtÞCUð0Þ þ _GðDtÞMUð0Þ þGðDtÞM _Uð0Þ þ
Z Dt

0

GðDt � sÞRðsÞds

_UðDtÞ ¼ �GðDtÞKUð0Þ þ _GðDtÞM _Uð0Þ þ
Z Dt

0

_GðDt � sÞRðsÞds

ð7Þ
Assuming that Dt is small enough, the following approximations can replace the integrals indicated in
Eq. (7):
Z Dt

0

GðDt � sÞRðsÞds � Gð0ÞRðDtÞDt
Z Dt

0

_GðDt � sÞRðsÞds � _Gð0ÞRðDtÞDt
ð8Þ
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Considering Eq. (7), as well as the approximations indicated by Eq. (8), recursive expressions can be ob-
tained by considering Eq. (2) at the time t + Dt and by supposing that the analysis starts at the time t.
The recurrence relations, that arise, are given by
Uðt þ DtÞ ¼ bGðDtÞCþ _GðDtÞMcUðtÞ þGðDtÞM _UðtÞ þGð0ÞRðt þ DtÞDt
_Uðt þ DtÞ ¼ �GðDtÞKUðtÞ þ _GðDtÞM _UðtÞ þ _Gð0ÞRðt þ DtÞDt

ð9Þ
where G(Dt) represents the solution of Eq. (1), at the time instant Dt, considering the load cases correspond-
ing to prescribed initial velocity vectors given by the columns of M�1 (Eq. (6)). It must be observed that
G(0) = 0; thus the last term on the r.h.s. of the first equation of expression (9) is null.
3. Implicit frequency-domain analysis

In order to develop the ImFGA (Implicit Frequency-domain Green�s Approach), one should obtain the
matrices G(Dt) and _GðDtÞ (see Eq. (9)) implicitly in the frequency domain. Thus the time domain Green�s
function matrices must be expressed in terms of harmonic components.

The transient Green�s function and its derivative (G(t) and _GðtÞ) may be related to their steady-state
counterpart (GvðtÞ and _GvðtÞ, respectively) by the equations
GðtÞ ¼ GvðtÞ þGðtÞ

_GðtÞ ¼ _GvðtÞ þ _GðtÞ
ð10Þ
in which GðtÞ, as well as _GðtÞ, are corrective functions representing the effect of unsatisfied initial condi-
tions. The corrective displacement and velocity functions may be expressed as
GðtÞ ¼ cuGuðtÞ þ cvGvðtÞ
_GðtÞ ¼ cu

_GuðtÞ þ cv
_GvðtÞ

ð11Þ
where GuðtÞ is the steady-state displacement at a time 0 < t < to due to a periodic set of unit displacement
changes applied at intervals to and GvðtÞ is the corresponding displacement due to a periodic set of unit
velocity changes applied at the same intervals.

The constants cu and cv present in Eq. (11) can be computed from the conditions Gð0Þ ¼ Gvð0Þ þGð0Þ
and _Gð0Þ ¼ _Gvð0Þ þ _Gð0Þ. Taking into account cu and cv computed as described, and Eqs. (11) and (6), Eq.
(10) becomes
GðtÞ ¼ H GvðtÞ �Gvð0ÞG
�1

u ð0ÞGuðtÞ
h i

_GðtÞ ¼ H _GvðtÞ �Gvð0ÞG
�1

u ð0Þ _GuðtÞ
h i ð12Þ
where
H ¼ M�1 Gvð0Þ �Gvð0ÞG
�1

u ð0Þ _Guð0Þ
h i�1

ð13Þ
Using Eq. (12) one can obtain G(Dt) and _GðDtÞ, once the values for Guð0Þ, _Guð0Þ, Gvð0Þ, _Gvð0Þ, GuðDtÞ,
_GuðDtÞ, GvðDtÞ and _GvðDtÞ are known. The expressions for the above-required matrices can be obtained by
a generalization of the concepts presented previously (Veletsos and Ventura, 1984; Veletsos and Ventura,
1985; Soares Jr. and Mansur, 2003) for the single-degree-of-freedom (SDOF) case, as indicated next
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Gvð0Þ ¼ MX þ aI ð14Þ

Guð0Þ ¼ ð1=2ÞIþ ð1=DtÞCK�1 � KX
_

ð15Þ
_Gvð0Þ ¼ Guð0Þ � CX � aCM�1 ð16Þ
_Guð0Þ ¼ �KX � aKM�1 ð17Þ

GvðDtÞ ¼ Gvð0Þ ð18Þ

GuðDtÞ ¼ Guð0Þ � I ð19Þ
_GvðDtÞ ¼ _Gvð0Þ � I ð20Þ
_GuðDtÞ ¼ _Guð0Þ ð21Þ
where
a ¼ Dt
2

1

p2

XMT

m¼1

1

m2

� �
� 1

6

 !
ð22Þ

X ¼ 1

Dt

XMT

m¼�MT

� 2pm
Dt

	 
2

Mþ 2pm
Dt

i
	 


Cþ K

" #�1
8<
:

9=
; ð23Þ

X
_

¼ 1

Dt

XMT

m¼�MT
m6¼0

� 2pm
Dt

	 
2

Mþ 2pm
Dt

i
	 


Cþ K

" #�1,
2pm
Dt

i
	 
8<

:
9=
; ð24Þ
and I is the identity matrix.
Once G(Dt) and _GðDtÞ have been calculated (see expressions (12)–(24)), one can use Eq. (9) to compute

unknown displacements and velocities for each time-step of the analysis. Eq. (9) can be written in a more
compact way, as follows:
Uðt þ DtÞ ¼ U1UðtÞ þ U2
_UðtÞ

_Uðt þ DtÞ ¼ _U1UðtÞ þ _U2
_UðtÞ þM�1Rðt þ DtÞDt

ð25Þ
where Eq. (6) were taken into account and
U1 ¼ GðDtÞCþ _GðDtÞM
U2 ¼ GðDtÞM
_U1 ¼ �GðDtÞK
_U2 ¼ _GðDtÞM

ð26Þ
The final recursive relations (Eq. (25)) lead to an efficient step-by-step procedure, once lumped mass ma-
trix is considered.

In order to correctly evaluate matrices G(Dt) and _GðDtÞ, and as a consequence the whole solution algo-
rithm, a good choice of MT (see Eqs. (22)–(24)) is required. It can be observed that for MT = 1, good re-
sults are in most cases achieved (it depends on the physical properties of the mechanical system, as well as of
the time-step discretization considered). Fig. 1 shows the spectral radius of the amplification matrix, for
the SDOF problem (Hughes, 1987; Bathe, 1996), versus time-step. Different natural frequencies, damp-
ing ratios and methodologies have been considered. As it can be seen in Fig. 1, it is possible to obtain
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Fig. 1. Spectral radius of the SDOF amplification matrix versus time-step (q · Dt) considering different natural frequencies and
damping ratios: (a) w = 2p, d = 1%; (b) w = 4p, d = 1%; (c) w = 2p, d = 10%; (d) w = 4p, d = 10%. Methodologies employed:
analytical (—); (—) trapezoidal rule; (–––) ImFGA with MT = 1; (Æ Æ Æ) ImFGA with MT = 2.
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an amplification matrix whose spectral radius is closer to that of the analytical one, by the use of the present
implicit frequency-domain formulation (even with small values ofMT) than by the use of the classical New-
mark trapezoidal rule method.

The simplifications adopted in Eq. (8) are responsible for the major contribution of the present formu-
lation to response errors. These simplifications, however, are typical of frequency-domain analyses: classi-
cal procedures, e.g., those based on DFT/FFT algorithms, also adopt exactly them, however, as the
equations are written in a different manner, such simplifications are not as clearly displayed as here (Brace-
well, 1986; Oppenheim and Schafer, 1989; Soares Jr. and Mansur, 2003). The simplifications indicated by
Eq. (8) reduce substantially the cost of the non-linear analysis algorithm, which is considered in the next
section.

The fact that good precision is achieved with very small MT values makes the present formulation more
efficient than standard ones, when frequency-domain analyses employing nodal coordinates are considered.
The present formulation is especially efficient for non-linear models.
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4. Non-linear analysis

The dynamic finite element method equations for physically non-linear problems can be written as
Fig. 2.
floor.
M€UðtÞ þ C _UðtÞ þ F UðtÞð Þ ¼ RðtÞ ð27Þ
where F is a vector of elastic or elasto-plastic forces which depends of the nodal unknown displacement
vector U(t). F(U(t)) represents the vector of nodal forces equivalent to the actual stress state.

In order to deal with the model non-linearity, the pseudo-forces method is adopted here. Such a proce-
dure is adequate for non-linear problems with small strains; as for instance is the case of elasto-plastic
behavior of certain structural systems.

Considering the non-linear contributions as pseudo-forces, Eq. (1) can be written as (Soares Jr. and
Mansur, 2005)
M€UðtÞ þ C _UðtÞ þ KLUðtÞ ¼ RðtÞ þ SðtÞ ð28Þ
where
SðtÞ ¼ �KNL UðtÞð ÞUðtÞ ð29Þ
is the pseudo-forces vector; KL is the linear stiffness matrix; and KNL is the matrix responsible for non-linear
contributions, whose elements depend on the displacement vector U(t).

The solution algorithm represented by Eq. (25) can then, by use of pseudo-forces, easily be adapted to
consider non-linear problems, as it is shown below
Uðt þ DtÞ ¼ U1UðtÞ þ U2
_UðtÞ

_Uðt þ DtÞ ¼ _U1UðtÞ þ _U2
_UðtÞ þM�1 Rðt þ DtÞ þ Sðt þ DtÞ½ 
Dt

ð30Þ
Eq. (30) show that the ImFGA requires no iterative process. Iterations usually associated to non-linear
analyses become unnecessary here as in the ImFGA the computation of the displacement at a time
t + Dt is not dependent of the load at that time. The displacement is in fact dependent of the load history
of previous time only (present time excluded) in view of the approximations adopted (Eq. (8)) as shown by
Eqs. (25) and/or (30).

Besides the efficiency (when compared to classical nodal frequency-domain procedures), the computa-
tional simplicity of the non-linear algorithm here presented (see Eq. (30)) and its good accuracy (as shown
in the next section) deserve to be highlighted. In fact, the ImFGA method described here is a quite inter-
esting option to analyze dynamic linear or non-linear models.
Shear building: (a) four-store shear building model; (b) equivalent spring-dashpot-mass model; (c) load applied at the fourth
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5. Numerical examples

5.1. Preliminary remarks

All the results here presented are compared with those obtained through the classical Newmark method
(trapezoidal rule). In the first example a very simple linear model is analyzed; in the second one, an elasto-
plastic model is considered.

For all the examples here presented, it was adopted MT = 1. In the second example, a Newmark/
Newton–Raphson iterative methodology was considered for the time domain comparative analysis. A
tolerance of 10�3 was then adopted (displacements and force residuals).

The ImFGA matrices (U1,U2, _U1 and _U2) are shown graphically in each example. As it can be seen,
these matrices present strong diagonal dominance, as it would be expect due to the causality principle. This
property can be explored in future research work.
Fig. 5. Clamped beam: (a) geometry and boundary conditions and (b) finite element mesh.
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method.
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5.2. Example 1

This example considers the simple four-store shear building shown in Fig. 2. The mass and the stiffness
values were adopted the same for all floors. They are: mass = 5.0 · 104 N s2/m; stiffness = 2.5 · 107 N/m.
The damping matrix was considered proportional to the stiffness matrix with a proportionality coefficient
equals to 1.5 · 10�2. The time-step adopted was Dt = 1.5 · 10�3 s. A force whose time dependence is shown
in Fig. 2(c) was applied at the fourth floor of the model.

Fig. 3 shows the displacements obtained for the shear building floors for the ImFGA and the Newmark
methods. A very good agreement can be observed between the two different methods� results. The matrices
related to the ImFGA algorithm (Eq. (25)) can be seen graphically in Fig. 4.
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5.3. Example 2

In this example a clamped beam is considered. The geometry, boundary conditions and finite element
mesh adopted can be seen in Fig. 5. Four hundred linear triangular isoparametric finite elements were em-
ployed. The geometry of the model is defined by a = 1.0 m and b = 0.5 m.

The clamped beam is submitted to a suddenly applied load, which is kept constant along time. The per-
fect plastic material is assumed to obey the von Mises yield criterion. The material properties are: Poisson�s
ratio = 0.0; Young modulus = 100.0 N/m2; mass density = 1.5 N s2/m4; uniaxial yield stress = 1.0 N/m2.
A time-step Dt = 10�3 s was considered in this analysis. The damping matrix was considered proportional
to the mass matrix with a proportionality coefficient equals to 1.0 (C = M).

Fig. 6 shows the vertical displacements obtained at point A (see Fig. 5) considering elastic and elasto-
plastic models for the ImFGA and the Newmark method. Once more, a very good agreement can be
observed between the different methodology results. The matrices related with the ImFGA algorithm
(Eq. (30)) can be seen graphically in Fig. 7.
6. Conclusions

This paper presents a hybrid time-frequency-domain time-stepping FEM procedure to integrate the
equations of motion in nodal coordinates. The approach described here, named ImFGA, is based on the
mechanical system Green�s function, which is implicitly computed in the frequency domain. The pseudo-
force method, which was employed here to deal with elasto-plastic material behavior, leads to an iteration
free time-stepping algorithm, as the time domain mechanical system Green�s function is null at the initial
time. Besides being, at each time-step, a low CPU time approach, the accuracy of the ImFGA algorithm is
quite good as shown by both the linear and non-linear examples presented in the paper.
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